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Abstract

Free oscillations of evaporating drops are investigated using a combination of numerical and theoretical analyses.

The investigation is based on an evaporation model that expresses the mass ¯ux as a function of the surface curvature

and is valid for surface amplitudes up to 10% of the drop radius. The results show that, the period of oscillation is

decreased by evaporation, however, the dominant mode of oscillation remains the same as that for a non-evaporating

drop. For low evaporation rates, it is shown that the recoil force is responsible for modi®cations in the period. At high

evaporation rates, the period of oscillation also varies signi®cantly in time, due to the decrease of the drop size. The

theoretical analysis is mainly concerned with in®nitesimal-amplitude oscillations via invoking simplifying assumptions

which are supported by numerical results. Closed-form expressions are derived for the period and the kinetic energy of

the drop. The predictions of the theory are compared with the results of the numerical simulations and excellent

agreements are observed. The e�ect of oscillations on the rate of evaporation is also investigated, and it is shown that

the rate of evaporation decreases for an oscillating drop as compared to a deformed but non-oscillating drop. Ó 2001

Elsevier Science Ltd. All rights reserved.

1. Introduction

The overall objective of this work is to investigate the

oscillations of evaporating drops and its impact on the

rate of evaporation. In Part I [1] of this study, we

showed that for a drop at its boiling temperature, and

with a large density ratio, the liquid and the gas phases

may be studied separately. The results of the gas phase

are presented in Part I, where a model is introduced to

describe the rate of evaporation of a deformed drop as a

function of its surface curvature. Here, we implement

this model to investigate free oscillations of an evap-

orating drop at small amplitudes.

Oscillations of a drop constitute one of the classical

problems in ¯uid mechanics. One of the early studies is

due to Rayleigh [2] who presents an analytical solution

for the in®nitesimal-amplitude oscillations of inviscid

drops in vacuum. The normal-mode technique is used to

®nd the frequency of oscillation of various spherical

harmonics which are also referred to as ``oscillation

modes''. The viscous e�ects and forces due to self-

gravitation are introduced into this problem by Lamb [3]

and Chandrasekhar [4]. Later, Reid [5] shows that for

arbitrary values of viscosity the results are the same for

self-gravitation and surface tension. Prosperetti [6]

considers the initial value problem of in®nitesimal-am-

plitude oscillations of viscous drops and shows that the

frequency of oscillations decreases with the decrease of

the Reynolds number. A nonlinear analytical solution

for moderate-amplitude oscillations of inviscid drops is

provided by Tsamopolous and Brown [7] who ®nd that

the frequency of oscillation decreases with the square of

the initial amplitude.

Early numerical simulations of drop oscillations have

been carried out by Foote [8] and Alonso [9] using

marker-and-cell method for a limited number of oscil-

lations. Boundary integral technique is implemented by

Lundgren and Mansour [10] to study the large-ampli-

tude oscillations of inviscid drops as well as drops with

weak viscous e�ects. Recently, Mashayek and Ashgriz

[11] have implemented the ®nite element method to

study oscillations of a drop with and without internal

circulation. The experimental studies in this ®eld can be

exempli®ed by the work of Trinh and Wang [12] who
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show an amplitude dependency of the frequency at large

amplitudes. Becker et al. [13] study oscillations of drops

generated from the breakup of a liquid jet. Wang et al.

[14] report the results from experiments on oscillations

of low-viscosity drops performed on board of Space

shuttle and verify the inviscid frequency shift, due to

nonlinearity, as predicted in [7]. Recently, Trinh et al.

[15] have studied large-amplitude oscillations of drops

and bubbles surrounded by another immiscible liquid.

Although the literature review above is brief, it does

indicate that free oscillations of evaporating drops has

not been the subject of a detailed investigation. These

oscillations can become important in atomization sys-

tems where the liquid is ®rst disintegrated into small

ligaments which then oscillate towards the attainment of

an equilibrium spherical shape. If these ligaments/drops

are exposed to a hot gas then the heat and mass transfer

could be a�ected by oscillations. Another possible im-

plication of the results of this study could be found in

the measurement of the surface tension coe�cient using

the drop oscillation period. In this situation, modi®ca-

tions in the period of oscillation due to evaporation can

in¯uence the accurate measurement of the surface ten-

sion coe�cient. These modi®cations can be predicted by

the present study. In this paper, we ®rst implement the

evaporation model developed in Part I to study the os-

cillations of evaporating drops via both numerical and

theoretical analysis in Section 2. A discussion of the

e�ects of oscillations on the rate of evaporation is then

presented in Section 3. A summary and some concluding

remarks are provided in Section 4.

2. Oscillations of evaporating drops

The governing equations are the continuity and

momentum equations for the liquid phase which are

described from Part I as:

r � ul � 0; �2:1�

oul

ot
� ul � rul � 1

Rel

r � Tl; �2:2�

where Tl � ÿplI� �rul � �rul�T� for Newtonian ¯uid.

All the variables are non-dimensionalized using the in-

itial radius of the spherical drop, r0, and a characteristic

time, �qlr
3
0=r�1=2

. Note that no energy equation is con-

sidered for the liquid phase as the drop is assumed to

be at its boiling temperature. This also eliminates the

possibility of thermocapillary ¯ows within the drop.

Nomenclature

a mean drop radius

B Cpg�T1 ÿ Tb�=Lv transfer number

Cp speci®c heat

Ek kinetic energy

Fn �3n� 2�=2�n�n� 1� � 2�
h spine function

I identity tensor

k thermal conductivity coe�cient

K drop surface curvature

Lv latent heat of evaporation

_m mass ¯ux
_M rate of change of drop mass

n mode of oscillation

n outward unit normal vector

p pressure

Pn Legendre polynomial of degree n

r radial (cylindrical) coordinate

r0 initial radius of the non-perturbed drop

Rn volume correction factor

Rel �1=ml��rr0=ql�1=2
liquid Reynolds number

t time

T temperature

T stress tensor

u �u; v� velocity vector

V drop volume

z axial coordinate

Greek symbols

a b2=k
b non-dimensional rate of evaporation

C decay factor

�n surface disturbance amplitude for mode n

f phase shift

k qg=ql density ratio

m kinematic viscosity

q density

r surface tension coe�cient

s oscillation period

/ inclination angle from drop axis

U velocity potential

v non-dimensional mass ¯ux

x non-dimensional oscillation frequency

Subscripts

0 initial value

b boiling condition

eq equilibrium

g gas

l liquid

ne non-evaporating

1 gas condition far from drop surface

Symbol

. non-dimensional radius of the spherical

drop
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The non-dimensional stress balance on the interface

is expressed as:

Tl � n � Rel K

 
� a FnK

�
� 2

.
�1ÿ Fn�

�2
!

n; �2:3�

where the surface curvature, K, is calculated from the

spine function, h�/�, which describes the surface of the

drop (Fig. 1(a)):

K � ÿ h2 � 2h2
/ ÿ hh//

�h2
/ � h2�1:5 ÿ hÿ cot /h/

h�h2
/ � h2�0:5 ; �2:4�

and

a � b2

k
; k � qg

ql

; b � 1

2
�qlr0r�ÿ�1=2� kg

Cpg

� �
ln�1� B�:

�2:5�
In writing (2.3), we have implemented the evaporation

model from Part I:

v � Fn K

��
ÿ 2

.

�
� 2

.

�
b; Fn � 3n� 2

2�n�n� 1� � 2� :

�2:6�
As a result of non-dimensionalization, the parameters

a�ecting oscillations of an evaporating drop reduce to

Rel, b, and k. In this section, we investigate the e�ects of

these parameters and the mode of oscillations via nu-

merical simulation and normal-mode analysis. It must

be emphasized that, due to the limitation imposed by the

evaporation model, only small-amplitude oscillations

are considered.

2.1. Simulation

The non-dimensional continuity and momentum

equations (2.1) and (2.2) are solved to investigate the

oscillations of an axisymmetric evaporating drop sub-

jected to boundary conditions

Fig. 1. Illustration of various steps involved in SFM: (a) de®nition of the initial interface by spine function h�/�; (b) subdivision of

the domain into subvolumes and description of the subvolume quantity; (c) mesh generation; (d) calculation of the velocity ®eld;

(e) advection of the liquid and calculation of the new subvolume quantities; (f) reconstruction of the new interface and generation of

®nite element mesh.
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oul

or
� 0; vl � 0 at r � 0: �2:7�

For even-mode oscillations symmetry boundary con-

ditions are also implemented on the plane of symmetry

ul � 0;
ovl

oz
� 0 at z � 0: �2:8�

The surface of the drop is initially perturbed from its

spherical shape using spherical harmonics

h�/� � Rn�1� �nPn�cos /��; �2:9�
where Pn�cos /� is the Legendre polynomial of degree n,

�n the amplitude of the disturbance, and Rn is used to

maintain the volume of the drop constant when �n is

varied. The relations for Rn are given in Part I.

The governing equations are solved using a Galerkin

®nite element method with penalty function formulation

as described in Part I. The interface is tracked using the

spine-¯ux method (SFM) [16]. SFM implicitly accounts

for the kinematic boundary condition on the interface,

and its basic constituents are illustrated in Fig. 1. To

follow the motion of the interface (Fig. 1(a)), the ¯uid

domain is divided into small subvolumes which are

separated by spines (Fig. 1(b)). The location of the in-

terface is given by its distance from the origin of the

coordinate system along these spines. At the end of each

time step ¯uxes of the ¯uid from each subvolume to its

neighboring subvolumes are calculated using the velocity

®eld (Fig. 1(d)) determined by the ®nite element solution

of the governing equations. After the new volume in each

subvolume is calculated (Fig. 1(e)), a linear approxima-

tion is used to describe the part of the interface con®ned

within every pair of neighboring subvolumes. With the

knowledge of the volumes of ¯uid inside these subvo-

lumes, the constants of the line are determined and in-

tersection of the interface with the common spine

between the neighboring subvolumes is obtained. Re-

peating this procedure for all the spines yields the loca-

tion of the interface which is then used to generate a new

®nite element mesh (Fig. 1(f)) for the next time step.

Due to the nature of SFM, its application for the

simulation of evaporating drops is straightforward.

With the knowledge of evaporation rate, the volume

change

dVe � p�hi � hi�1�b FnK

�
� 2

.
�1ÿ Fn�

�
dl dt; �2:10�

for each subvolume is calculated for the time increment

dt, and is accounted for when updating the volume of

the ¯uid inside the subvolume during the step shown in

Fig. 1(e). In (2.10), dl denotes the length of the interface

con®ned within the subvolume.

Preliminary simulations have been performed with

di�erent mesh sizes and time increments in order to es-

tablish the accuracy of the results for various cases.

Table 1 shows the variation of the ®rst period of oscil-

lation with mesh size for a typical drop released from a

fourth spherical harmonic initial (indicated by subscript

`0') surface disturbance. For this case, �40 � 0:05,

Rel � 100, b � 2� 10ÿ4, and k � 10ÿ7. The table shows

that a reasonable accuracy in calculating the period may

be achieved using 34 elements in the peripheral and

seven elements in the radial directions. In general, the

results are more sensitive to the number of elements in

the peripheral direction than to that in the radial di-

rection. This is expected as the increase of the number of

elements in the peripheral direction also improves the

accuracy in the representation of the interface. Mash-

ayek and Ashgriz [16] show that SFM is second-order

accurate, i.e., the error in interface reconstruction de-

creases quadratically with the decrease of the node

spacing in the peripheral direction.

In analyzing the results of the simulations, it is in-

structive to consider the temporal variations of the

amplitudes (Am) of the primary input and its harmonics.

This is accomplished by decomposing the surface of the

drop, h�/; t�, into its linear modes:

h�/; t� � .�t� 1
h
�
X

Am�t�Pm�cos /�
i
; m � 0; 1; 2; . . . ;

�2:11�
where .�t� is the radius of the equivalent spherical drop

at time t. The coe�cients Am�t� are determined from

(2.11) using the orthogonality of the Legendre polyno-

mials and numerical integration.

2.1.1. Low evaporation rate

In order to relate the magnitude of non-dimensional

evaporation rates to values of the physical variables,

here we consider a heptane drop in air as an example.

We assume that properties of heptane are ®xed

at ql � 649:4 kg=m3, r � 0:0148 N=m, and Lv �
361:8 kJ=kg, as typical values. Properties of air vary

with temperature, therefore, to provide a better estimate

we use Cpg � 1:006±1:099 kJ=kg°C and kg � 0:03±

0:057 W=m °C for air at various temperatures and at-

mospheric pressure. We also choose r0 � 60 lm for the

initial radius of the spherical drop. Substituting these

values in (2.5), we can estimate the non-dimensional

Table 1

Variation of the ®rst period of oscillation with mesh size from a typical convergence study. �40 � 0:05, Rel � 100, b � 2� 10ÿ4, and

k � 10ÿ7

Mesh size 22� 7 26� 7 30� 7 34� 7 38� 7 30� 9

First period 0.615 0.613 0.612 0.611 0.611 0.612
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evaporation rate b for various values of the temperature

di�erence DT � T1 ÿ Tb as shown in Table 2. It must be

emphasized that the values given in the table are only

representative and may vary in a real case. Also shown

in the table is the parameter %DV =V0 � 100�
�V0 ÿ V �=V0, which indicates the percent relative change

in the volume (V) of a spherical drop with respect to its

value before evaporation (V0). The instantaneous vol-

ume V � 4p.3=3 has been calculated using .�t� �
�1ÿ 4bt�1=2

which describes the temporal variation of

the radius of a spherical drop. To calculate the values

shown in Table 2, t � 2:221 has been used as a typical

value which is the prediction of the inviscid theory for

the period of oscillations of a non-evaporating drop

released from a second spherical harmonic surface per-

turbation. It is observed that evaporation rates O�10ÿ4�
are easily feasible with temperature di�erences around

60°C. However, the change in the volume of the drop for

this rate of evaporation is too small to be considered

signi®cant for most laboratory experiments. It is also

noted that the values of B in Table 2 are within the range

used in simulations in Part I. In this section, we consider

evaporation rates listed in Table 2. Higher evaporation

rates, resulting in large changes in the volume of the

drop, are discussed in Section 2.1.2.

Fig. 2 shows the temporal variations of the amplitude

of the primary mode P2 for a drop released with

�20 � 0:05 and Rel � 100. Both non-evaporating (b � 0)

and evaporating (b � 2� 10ÿ4, k � 10ÿ7) cases are

considered. The ®gure clearly shows that, while oscilla-

tions remain periodic, the frequency is increased by

evaporation. Similar observations were made for all of

the harmonics and all of the cases considered in this

study. This suggests that the behavior of evaporating

drops (similar to non-evaporating drops) oscillating at

small amplitudes may be characterized by the primary

input only. Therefore, in analyzing the results we will

only consider the primary input.

A review of formulation in Part I reveals that

evaporation can a�ect oscillations: (i) by decreasing the

size of the drop; and/or (ii) through the recoil force

appearing in the normal stress boundary condition.

Table 2 indicates that changes in the drop size are not

very signi®cant for cases considered in this subsection.

This suggests that the recoil force should be responsible

for modi®cations observed in the period of oscillations.

This may be examined by keeping the size of the drop

unchanged in the numerical simulation while imposing

the recoil force. The temporal evolution of the primary

input for this case, labeled with ``®xed mass'', is also

shown in Fig. 2. It is clearly observed in the ®gure that

the result for the evaporating case without size change is

virtually identical to the result from the evaporating

case. This veri®es that, for low evaporation rates, the

recoil force is the cause of the changes in the period of

oscillation. A theoretical description will be given in

Section 2.2.

Fig. 3 shows the variation of the period of oscillation

with the density ratio for a drop with �2 � 0:05 and

Rel � 100. The values of the period shown in the ®gure

are the average of the ®rst three periods to reduce the

e�ects of the initial conditions. The ®rst case is for

b � 2� 10ÿ4 which, according to Table 2, corresponds

to DT ' 110°C. It is observed that as the gas density is

decreased the period of oscillations also decreases. For

k � 3� 10ÿ6, the change in the period of oscillation is

Table 2

Typical values for B, b, and %DV =V0 (DV � V0 ÿ V ) as a

function of DT � T1 ÿ Tb for heptane drops in air using the

property values listed in the text

DT (°C) B b %DV =V0

30 0.084 5�10ÿ5 0.067

60 0.167 1�10ÿ4 0.133

110 0.310 2�10ÿ4 0.27

250 0.735 5�10ÿ4 0.67

500 1.519 1�10ÿ3 1.33

Fig. 2. Temporal variations of the amplitude of the primary

input P2 for a drop released with �20 � 0:05 and Rel � 100. For

evaporating cases b � 2� 10ÿ4 and k � 10ÿ7.

Fig. 3. Variations of the period of oscillation with density ratio

for an evaporating drop with �20 � 0:05 and Rel � 100.
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about 1.5% which could be detectable via laboratory

experiments. Further decrease in the gas density results

in more signi®cant decrease of the period ± for k � 10ÿ7

a reduction of 25% is predicted whereas the change in

the volume of the drop is only 0.2% of the initial volume.

As expected, the increase of the evaporation rate to

b � 10ÿ3 results in a larger reduction of the period of

oscillation. For this rate of evaporation approximately

2% reduction in the period is observed for k � 10ÿ4.

Next, we consider variations of the period of oscil-

lations with the evaporation rate b, for a ®xed value of

the density ratio k � 10ÿ7 ± similar results can be ex-

pected for smaller k but larger b (see Section 2.2.1). The

largest value used for evaporation rate is b � 10ÿ3 which

corresponds to DT ' 500°C for heptane drops in air. It

is noted from Table 2 that the volume change for this

value of b is somewhat signi®cant and may have some

e�ects on the period. This issue will be investigated later

in Section 2.2.2 via comparison of the numerical results

with predictions of the theory. The period values shown

in Fig. 4 belong to the primary mode and are the average

of the ®rst three periods of oscillations for Rel � 100 and

30. For Rel � 5, the amplitude of oscillations becomes

very small for these small-amplitude simulations,

therefore, the ®rst oscillation is used for period calcu-

lation.

Fig. 4(a) shows the variations of the period of oscil-

lations for a drop released from an initial second

spherical harmonic shape with an amplitude of

�20 � 0:05. A signi®cant reduction in the period is ob-

served with the increase of the evaporation rate; up to

�80% for b � 10ÿ3. It appears from Fig. 4(a) that the

rate of change of the period with the evaporation rate

decreases for large values of b. For all values of b, the

decrease of Rel increases the period, however, the results

suggest that the e�ect of the Reynolds number on the

period diminishes with the increase of the evaporation

rate. With the increase of b the period of oscillation

decreases and less time is available for viscous dissipa-

tion.

In Figs. 4(b)±(d) variation of the period is portrayed

for higher spherical modes n � 3, 4, and 5 with an initial

disturbance amplitude of 0.05. It is observed that, sim-

ilarly to non-evaporating drops, the oscillations of

evaporating drops take place with smaller period for

higher modes. The e�ect of the Reynolds number on the

period is enhanced with the increase of n. In Section

2.2.1, it is shown that the kinetic energy of an oscillating

drop is proportional to �nÿ 1��n� 2�=4�2n� 1� which

increases with the increase of n. The increase of the

kinetic energy enhances the viscous e�ects. It is, how-

ever, observed that the e�ect of the Reynolds number

Fig. 4. Variations of the period of oscillation with evaporation rate for k � 10ÿ7: (a) n � 2; (b) n � 3; (c) n � 4; (d) n � 5.
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tends to diminish at high evaporation rates for all the

modes. The general observation from Fig. 4 is the exis-

tence of a similarity in the variations of the period with b
for the low evaporation rate cases considered in this

subsection. This observation is veri®ed by theory in

Section 2.2.1 where we show that the period of oscilla-

tions of a slowly evaporating drop, when normalized

with the period of the corresponding non-evaporating

drop, is only a function of the non-dimensional

parameter a and the coe�cient Fn.

Previous studies (e.g., [6,16]) show that with the de-

crease of the Reynolds number the nature of oscillations

of a non-evaporating drop changes from underdamped

to overdamped. These studies also show that this tran-

sition occurs for Reynolds numbers of about unity.

Fig. 5 indicates a similar behavior for an evaporating

drop with b � 2� 10ÿ4, k � 10ÿ7, �20 � 0:05, and

Rel � 1. However, analogous to the increase of the fre-

quency of oscillations at higher Reynolds numbers, the

rate of damping increases when the drop is evaporating.

This could again be attributed to the increase of the

kinetic energy by evaporation which enhances the vis-

cous e�ects for the evaporating drop.

2.1.2. High evaporation rate

In this subsection, we brie¯y study the e�ects of high

evaporation rates on the oscillation of drops to complete

our investigation. This study has also the extra advan-

tage of unmasking some of the physical phenomena

which are not clearly observed at low evaporation rates.

To investigate the e�ects of high evaporation rate,

second-mode oscillations of a drop with �20 � 0:05 are

considered. The drop is allowed to evaporate with a

variety of b values while the magnitude of the density

ratio, k, is chosen such that a � 0:1 for all of the cases.

In this manner, changes in the magnitude of the recoil

force are due to variations of the surface curvature only.

This allows us to study the modi®cations of the period of

oscillations due mainly to changes in the drop size. Fig. 6

shows the temporal variations of the amplitude of the

primary input P2 for low and high evaporation rates. At

low evaporation rate the amplitude of P2 decreases in

time due mainly to viscous e�ects. For the case with high

evaporation rate the decay of the amplitude is much

faster, in part, because the drop radius for this case

decreases to �45% of its initial value at the end of the

simulation. An analysis of the plots (not shown) of the

temporal variation of the amplitude normalized with

instantaneous radius of the equivalent spherical drop

indicated that the decay rate of the amplitude is faster

than the rate of decrease of the radius.

To further investigate the period of oscillations, in

Fig. 7(a) we show the variation of the period with the

number of periods for a variety of b values. It is ob-

served that, starting from an initial amplitude of 0.05,

the period of oscillations of the non-evaporating drop

remains the same in time. For b � 10ÿ4, the period of

oscillations decreases but is again nearly constant as the

number of periods increases. Further increase of b re-

sults in a pronounced variation of the period with time.

For b � 10ÿ2, the highest evaporation rate considered,

a signi®cant decrease is observed in the period of os-

cillation as the number of periods increases. A physical

explanation for changes in the period may be provided

by considering a quasi-steady state oscillation for the

drop, i.e., assuming that the oscillations of the drop at

time t can be characterized by its instantaneous radius

.. Since the characteristic time for the non-evaporating

drop is proportional to �r0�3=2
, we can postulate that

the period of oscillation is decreased proportional to

the decrease of .3=2. In Section 2.2.1 an expression is

obtained for the period of oscillations that can accu-

rately describe the variations of the period as observed

here.

It was pointed out in Section 2.1.1 that evaporation

a�ects the oscillations by either changing the size of the

drop or modifying the normal stress through the recoil

force. Numerical simulation allows the investigation of

Fig. 5. Temporal variations of the amplitude of the primary

input P2 for �20 � 0:05 and Rel � 1. For the evaporating case

b � 2� 10ÿ4 and k � 10ÿ7.

Fig. 6. Temporal variations of the amplitude of the primary

input P2 for �20 � 0:05, Rel � 100, and a � 0:1.
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either of the above mechanisms by setting the other one

equal to zero. For drops evaporating at low rates, this

decomposition revealed that the change in the drop size

does not signi®cantly a�ect the period of oscillations and

the recoil force is responsible for the observed modi®-

cations. In Fig. 7(b), the results from a similar analysis

are shown for a drop evaporating with high rate. It is

observed that when the mass of the drop is ®xed, the

recoil force changes the period of oscillations in a

manner similar to what was observed for low evapora-

tion rate ± the modi®cation in the period is the same for

all number of periods. When the recoil force is set equal

to zero, however, a variation for the period with the

number of periods is clearly observed. This suggests that

changes in the drop size at large evaporation rate sig-

ni®cantly a�ect the period of oscillations. An analysis of

the data for the ®rst few oscillations indicated that the

ratio of the period for the case with high evaporation

rate (b � 10ÿ2) to the period for the similar case without

recoil force is close to 0.912. This is the same value

obtained for the ratio of the period of a slowly evap-

orating drop to the period of its respective non-evap-

orating drop when the same value is used for a.

The results from additional simulations (not shown)

indicated that the change of the period with the number

of periods is smaller for higher modes of oscillations.

This is due to the fact that the period of oscillation is

shorter for drops oscillating at higher modes. As a re-

sult, for the same rate of evaporation, the change in the

drop size during each period of oscillation becomes

smaller as the mode of oscillation increases. This

diminishes the e�ects of evaporation on the period of

oscillations at higher modes.

2.2. Theory

Oscillations of an evaporating drop, in general, is a

complex, nonlinear problem that demands a sophisti-

cated analytical solution. However, the results of our

numerical simulations suggest that, under the conditions

considered here, the problem can be simpli®ed. In this

section, we present a theoretical analysis for in®nitesi-

mal-amplitude oscillations of an inviscid drop. The

predictions of the theory are compared to the results of

the numerical simulations in Section 2.2.2.

2.2.1. Period of oscillations and kinetic energy

First, we consider a solution for the period of oscil-

lations of an inviscid, evaporating drop surrounded by

an inviscid, incompressible gas. Since the radius of the

drop is changing, as a result of evaporation, the basic

state is time-dependent and a normal-mode analysis is

not valid in an exact sense. However, as it has been the

case in many other studies (see e.g., [17] and references

therein), we can assume that the time scale for the

evolution of the interface is much shorter than that for

the basic state. In this manner, the basic state may be

considered quasi-steady and a normal-mode analysis can

be implemented with approximation. The validity of this

assumption is later veri®ed through the agreement ob-

served between the theory and simulations in Section

2.2.2. The solution procedure here, is similar to that

adopted by Lamb [3, pp. 474±475], for oscillations of a

(non-evaporating) inviscid drop whose surface is de-

scribed as

h � a� �nPn cos�xt � f�: �2:12�

For the quasi-steady evolution of the evaporating drop,

the velocity potentials for the liquid (Ul) and the gas (Ug)

can be described by the same expressions as those given

by [3] for a non-evaporating drop

Ul � ÿxa
n

rn

an
�nPn sin�xt � f�;

Ug � xa
n� 1

an�1

rn�1
�nPn sin�xt � f�: �2:13�

The liquid and gas pressures are then, respectively, ex-

pressed as

Fig. 7. Variations of the period with the number of periods for

a drop with �20 � 0:05, Rel � 100, and a � 0:1.
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pl � pl;eq � x2a
n
�nPn cos�xt � f�;

pg � pg;eq ÿ kx2a
n� 1

�nPn cos�xt � f�;
�2:14�

where pl;eq and pg;eq refer to the equilibrium pressures

attained when the drop assumes a spherical shape, i.e.,

for �n � 0. The pressures must satisfy the normal stress

boundary condition (2.3) which for inviscid drop and

inviscid ambient gas reads

pl ÿ pg �K� aF 2
n K

2 � 4a
a

Fn�1ÿ Fn�K� 4a
a2
�1ÿ Fn�2:
�2:15�

For in®nitesimal-amplitude perturbations of a drop, the

curvature can be described as [3]

K � 2

a
� �nÿ 1��n� 2�

a2
�nPn cos�xt � f�: �2:16�

Substituting from (2.14) and (2.16) into (2.15) with

pl;eq ÿ pg;eq � 4a
a2
�1ÿ Fn�2

� 1

�
� 4a

a
Fn�1ÿ Fn�

�
2

a
� aF 2

n

4

a2
; �2:17�

and neglecting terms O��2
n� yields:

x2 � 1

a3
1

�
� 4aFn

a

�
n�nÿ 1��n� 1��n� 2�

n� 1� kn
: �2:18�

The derivation leading to (2.18), demonstrates that the

contribution of the pressure ¯uctuations of the ambient

gas to the frequency of oscillation is O�k�. This justi®es

the neglect of these ¯uctuations for k� 1 in formulation

of Part I.

Setting a � 0, (2.18) reduces to an expression for the

frequency of oscillations of a non-evaporating drop, xne.

This yields:

x2

x2
ne

� a3
ne

a3
1

�
� 4aFn

a

�
; �2:19�

where, ane is the mean radius of the non-evaporating

drop. Eq. (2.19) can be expressed as

s
sne

� a
ane

� �3=2

1

�
� 4aFn

a

�ÿ1=2

�2:20�

for the ratio of the period of oscillations of an evap-

orating drop to that of a non-evaporating drop. Our

numerical results indicate that the e�ects of small-am-

plitude oscillations on the evaporated mass are small,

thus the instantaneous mean radius of the oscillating

drop can be closely approximated by that of a spherical

drop

. � �1ÿ 4bt�1=2
: �2:21�

Further, for in®nitesimal-amplitude oscillations ane ' 1,

therefore, (2.20) yields

s
sne

� �1ÿ 4bt�3=4

1� 4aFn�1ÿ 4bt�ÿ�1=2�
h i1=2

: �2:22�

It is noted that (2.22) depends on the mode of oscillation

through Fn and for low evaporation rates (b! 0) re-

duces to

s
sne

� 1� � 4aFn�ÿ1=2
; �2:23�

which is a function of a and Fn only.

Eq. (2.22) can be used to investigate the e�ects of the

evaporation rate and the density ratio on the period of

oscillations of an evaporating drop. Fig. 8(a) shows the

temporal variations of the periods ratio for k � 10ÿ6 at

di�erent values of b for two modes of oscillation. It is

observed that for b6 10ÿ4 the e�ect of the drop size

change is small and the period of oscillations does not

signi®cantly vary in time. Oscillations of a drop with

b � 10ÿ3 may still be described by neglecting the

changes in the drop size. However, as the numerical

results also suggest, for b � 10ÿ2 temporal variation of

Fig. 8. Temporal variations of the period of oscillations of an

evaporating drop from Eq. (2.22): (a) k � 10ÿ6; (b) b � 10ÿ2.
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the period is large as a result of the signi®cant changes in

the drop size. To investigate the e�ects of the density

ratio at this large evaporation rate (b � 10ÿ2), in

Fig. 8(b) a variety of k values are considered. This ®gure

shows that the temporal variations of the period is large

for all the values of the density ratio. As expected, this

indicates that the temporal variations of the period is

dependent more on the evaporation rate than on the

density ratio. A comparison of the results for n � 5 with

those for n � 2 indicates that s=sne always increases with

the increase of the mode of oscillation. All of these ob-

servations are in qualitative agreement with the numer-

ical results and indicate that (2.22) can be used for the

prediction of the period of in®nitesimal-amplitude os-

cillations of an evaporating drop at high Reynolds

numbers.

The numerical results of Section 2.1.1 and Eq. (2.23)

indicate that, for low evaporation rate, the oscillations

of the drop may be approximately represented by a

single time-independent frequency, i.e.,

an � �n cos�xt � f�: �2:24�
For quasi-steady evaporation, we can derive an ex-

pression for the kinetic energy of the drop starting from

the following relation provided by Rayleigh [2]:

Ek � 1

2n�2n� 1�
dan

dt

� �2

; �2:25�

where we are only considering mode n, and Ek is nor-

malized by the surface energy of the spherical drop

4pra2. For inviscid drop and small evaporation rates the

amplitude of oscillations �n can also be assumed inde-

pendent of time. With this assumption, substituting

from (2.24) into (2.25) yields

Ek � x2

2n�2n� 1� �
2
n�sin�xt � f��2; �2:26�

which may also be expressed as

Ek � x2

4n�2n� 1� �
2
n 1f ÿ cos�2�xt � f��g; �2:27�

indicating that the frequency of oscillations of the

kinetic energy is twice as large as that of the surface of

the drop. This is in agreement with physical intuition as

the kinetic energy assumes minimum values when the

drop surface reaches its maximum deformation, occur-

ring twice within each period of surface oscillation.

Previous studies of non-evaporating drops as well as our

numerical results show that viscous e�ects in the oscil-

lations may be well represented by implementing a

``decay factor'' C, such that �n � �n0 exp�ÿCt�. There-

fore, for low evaporation rates, we may extend (2.26) to

an expression for the kinetic energy of a viscous drop by

including a decay factor

Ek � 1

2n�2n� 1� �
2
n0 x sin�xt� � f�

� C cos�xt � f��2 exp�ÿ2Ct�: �2:28�

For small viscosity, C is small in comparison to x and

(2.28) is simpli®ed to

Ek � x2

4n�2n� 1� �
2
n0 1f ÿ cos�2�xt � f��g exp�ÿ2Ct�:

�2:29�

The numerical results of Section 2.1.1 show that for

moderate and high Reynolds numbers C does not sig-

ni®cantly change with evaporation rate. Therefore,

substituting for x from (2.18) with a ' 1, (2.29) indi-

cates that the amplitude of oscillations of Ek for an

evaporating drop is �1� 4aFn� times as large as that for

a non-evaporating drop.

2.2.2. Comparison of theory with simulation

First, we consider cases with low evaporation rates

for which the oscillations do not vary signi®cantly in

time and may be represented by a single value for the

period. In Fig. 9, the predictions of the theory (lines)

for the period ratio (2.23) are compared to the results of

numerical simulations (symbols) from Section 2.1.1.

Various oscillation modes are considered with an initial

amplitude of 0.05. At high and moderate Reynolds

numbers (Rel � 100 and 30) the agreement between the

theory and simulation is excellent. This is encouraging

as the theory is developed for inviscid drops. Some

deviations are observed for Rel � 5 for which the theory

overpredicts the numerical results. The deviation is

larger for higher spherical modes for which the drop

oscillates faster and experiences a larger viscous dissi-

pation. The agreement observed in Fig. 9 shows that

the neglect of the drop size variation has very little

impact on the prediction of the period ratio. The nu-

merical results are also in agreement with theory in that

the increase of the mode of oscillation results in the

increase of the period ratio. It must be added that when

the inviscid theory is used for oscillations of a low

Reynolds number drop the predicted period is in

somewhat signi®cant error (about 10% for Rel � 5 in

non-evaporating case with n � 2). However, Fig. 9

shows that the ratio of the period is reasonably well

predicted by the theory even for low Reynolds num-

bers.

In Fig. 10 the prediction of the theory (2.29) is

compared to the kinetic energy calculated from numer-

ical simulations for a case with �20 � 0:01 and Rel � 100.

Both non-evaporating (b � 0) and evaporating

(b � 10ÿ4, k � 10ÿ7) are considered. For this low evap-

oration rate case, a value for C is calculated from nu-

merical results using
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Cj � 1

tj ÿ tjÿ1

ln
Ajÿ1

Aj
; j � 1; 2; . . . ; �2:30�

where A represents the amplitude of the primary input

and j refers to the oscillation number. The value used

for C is the average over the ®rst three oscillations in

order to diminish the e�ects of the initial conditions.

The kinetic energy is calculated relative to the sur-

face energy of the equivalent spherical drop, 4prr2
0,

using

Ek � 1

4

Z p

0

Z h

0

u2
l

ÿ � v2
l

�
r2 sin / dr d/: �2:31�

It is clearly observed from Fig. 10 that the theory is in

good agreement with numerical results. The increase of

both the amplitude and the frequency of oscillations of

Ek due to evaporation is accurately predicted by the

theory.

Finally, we consider the cases with high evaporation

rate discussed in Section 2.1.2. In Fig. 11 the prediction

of (2.22) is compared to the results of numerical simu-

lations for n � 2 and 4 with the initial amplitude of 0.05,

Rel � 100, b � 10ÿ2, and a � 0:1. To make the com-

parison, a time must be assigned to each period calcu-

lated from numerical simulations. As the best

approximation the average time is used, i.e., if a period

extends from t1 to t2, �t1 � t2�=2 is assigned to that

period. In Fig. 11, the time axis is normalized by sne for

each respective mode of oscillation. Although (2.22) is

obtained based on several assumptions, an excellent

agreement with the numerical results is observed in

Fig. 11.

Fig. 9. Comparison between the prediction of theory (lines) and the results of numerical simulations (symbols) for the period of

oscillation of a drop released with an initial amplitude of 0.05 and k � 10ÿ7. (a) Rel � 100, (b) Rel � 30, and (c) Rel � 5.

Fig. 10. Comparison between the prediction of theory and the

results of numerical simulations for the kinetic energy of a drop

released with �20 � 0:01 and Rel � 100: (a) non-evaporating;

(b) evaporating with b � 10ÿ4 and k � 10ÿ7.
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3. E�ects of oscillations on evaporation

To assess the e�ects of oscillations on evaporation,

an expression is derived for the temporal variations of

the volume V �t� of an evaporating, inviscid drop oscil-

lating with in®nitesimal-amplitude. With the evapora-

tion model of Part I, the rate of change of the drop

volume is described as

dV
dt
� ÿb

Z
X

FnK

�
� 2

Rn
�1ÿ Fn�

�
dX; �3:1�

where X is the surface area of the drop. In accordance

with numerical simulations, we represent the surface of

the drop by

h � Rn�1� anPn�; �3:2�
where an, the amplitude of oscillation, is a function of

time only. For a surface de®ned by (3.2), the curvature is

given by [5]

K � 2

Rn
� �nÿ 1��n� 2�

Rn
anPn: �3:3�

Substituting (3.3) into (3.1) and describing dX in terms

of h and / yields

ÿ 1

b
dV
dt
� 2

Rn
I1 � �nÿ 1��n� 2�

Rn
FnanI2; �3:4�

where

I1 � 2p
Z p

0

h2

�
� 1

2
h2

/

�
sin / d/;

I2 � 2p
Z p

0

Pn h2

�
� 1

2
h2

/

�
sin / d/: �3:5�

After some algebraic manipulations, detailed in the

Appendix A, we arrive at

ÿ 1

b
dV
dt

� 8pRn � �n
2 � n� 2� � 2�nÿ 1��n� 2�Fn

�2n� 1�
� 4pRna2

n �O�a3
n�: �3:6�

Describing an by (2.24), yields

ÿ 1

b
�V �t� ÿ V0�

� 8pRnt � �n
2 � n� 2� � 2�nÿ 1��n� 2�Fn

�2n� 1�

� 4pRn�
2
n

Z t

0

�cos�xt0��2 dt0; �3:7�

where V0 � 4p=3 is the initial volume of the drop. For

low evaporation rates (a ' 1), we approximate the fre-

quency of oscillation x from (2.18), therefore

V0 ÿ V �t�
V0

� 6Rnbt � 3��n2 � n� 2� � 2�nÿ 1��n� 2�Fn�
2�2n� 1� Rn�

2
nbt

� 3��n2 � n� 2� � 2�nÿ 1��n� 2�Fn�
4�2n� 1�x Rn�

2
nb sin�2xt�

� O��3
n� �O�bt�2: �3:8�

The ®rst term on the right-hand side of (3.8) is an ap-

proximation [O�bt�2] of the relative change in the vol-

ume of a spherical (�n � 0) drop. The second and third

terms on the right-hand side represent the modi®cation

in evaporation due to the surface deformation. These

terms are quadratic in �n and increase with the increase

of n, in agreement to the results presented in Part I. The

third term on the right-hand side shows that the volume

of the drop oscillates in time with a frequency twice as

large as the frequency of the surface oscillation.

Further insight into the e�ects of oscillations on the

rate of change of the mass of the drop, _M � ÿql dV =dt,
is provided by rewriting (3.6) as

d _M �
_M ÿ _Msp

_Msp

� Gn�
2
n�1� cos�2xt�� �O��3

n�; �3:9�

where

Gn � �n
2 � n� 2� � 2�nÿ 1��n� 2�Fn

4�2n� 1� : �3:10�

According to (3.9), the evaporation rate of the oscillat-

ing drop exhibits an oscillatory behavior, however, it is

always greater than or equal to the evaporation rate of a

spherical drop. It is also noted that d _M varies quadrat-

ically with the amplitude of oscillations. When inte-

grated and averaged over one period of oscillations,

d _M � Gn�
2
n which is half of that for a non-oscillating

drop deformed with the same amplitude. Therefore, it

Fig. 11. Comparison between the prediction of theory (lines)

and the results of numerical simulations (symbols) for the

period of oscillation of a drop evaporating at high rates and

released with an initial amplitude of 0:05, Rel � 100, b � 10ÿ2,

and a � 0:1. The time axis for each case is normalized with the

period of oscillations for the respective non-evaporating drop.
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may be concluded that oscillations of the drop tend to

diminish the increase in the evaporation rate (caused by

surface deformation) by 50%. This is due mainly to the

change in the amplitude of the surface deformation

during oscillations. For a viscous drop, the decrease is

expected to be larger than 50% due to the decay of

amplitude in time. The e�ect of the mode of oscillations,

is realized by examining Gn values in Table 3 which in-

dicate a nearly linear increase with n. It is emphasized

that, (3.9) does not include the e�ect of change in the

radius of the drop on the evaporation rate. However,

this should not signi®cantly a�ect this analysis as we are

considering the deviation from the equivalent spherical

drop.

At this point, it is instructive to consider the change

in the surface area of the drop during oscillations. The

surface area, A, is given by the integral I1 in (3.5), and

its deviation from the surface of a spherical drop can be

expressed as:

dA � Aÿ Asp

Asp

� Hn�
2
n�1� cos�2xt�� �O��3

n�; �3:11�

where

Hn � �n
2 � n� 2�

4�2n� 1� : �3:12�

The change in the surface area is similar to the change in

the evaporated mass. The Hn values listed in Table 3

show that the surface area also increases with the in-

crease of the mode of oscillation. However, the ratio

Gn=Hn is larger than unity for all modes, which indicates

that the increase in the evaporated mass is not due to the

increase in the surface area only. It is interesting that this

ratio has a peak value of 1:561 for n � 3 and then de-

creases with the increase of n.

4. Conclusion

Numerical simulation and theoretical analysis are

used to investigate free oscillations of evaporating

drops. The preheat period is not considered and the

drop is assumed to be at the liquid boiling temperature.

The surrounding gas, except for the region close to the

drop, is also at a uniform temperature and its density is

much smaller than the liquid density. Under these as-

sumptions, it is shown that the gas and the liquid phase

can be studied separately. The coupling between the two

phases is through an evaporation model which is derived

from the study of the gas phase in Part I and is then

implemented to analyze the oscillations in the liquid

phase.

The use of the model has limited the analysis to small

disturbance amplitudes. The e�ects of the mode of the

initial surface disturbance, the Reynolds number, the

transfer number, and the density ratio are studied.

Evaporation a�ects oscillations by decreasing the size of

the drop and/or through the recoil force appearing in the

normal stress boundary condition on the interface. The

results of the numerical simulations are discussed for

low and high evaporation rates, where low evaporation

rates are characterized by somewhat insigni®cant

changes in the drop size. The period of oscillations of a

drop evaporating with low rates may signi®cantly

change as a result of the recoil force. In general, the

period of oscillations is decreased with the increase of

the evaporation rate. For high evaporation rates, the

period of oscillations also varies in time due to signi®-

cant reduction in the drop size. Similar trends for the

variations of the period with the evaporation rate are

observed for the second-, third-, fourth-, and ®fth-mode

surface disturbances at high and moderate Reynolds

numbers. At very low Reynolds numbers the nature of

oscillations is changed to underdamped, similar to os-

cillations of non-evaporating drops.

The theoretical analysis is based on in®nitesimal-

amplitude oscillations. For the period of oscillations of

the evaporating drop, a normal-mode analysis is per-

formed by assuming that the time scale for the evolution

of the basic state is much larger than the time scale for

the evolution of the drop surface. The theory describes

the ratio of the period of oscillations of an evaporating

drop to the period of oscillations of the respective non-

evaporating drop as a function of the mode of oscilla-

tion, the evaporation rate, and the density ratio. A

comparison of the prediction of the theory with nu-

merical results indicates excellent agreements for both

low and high evaporation rates. The variations of the

kinetic energy, for low evaporation rates, is also pre-

dicted by the theory and show reasonable agreements

with numerical results.

Finally, the e�ect of oscillations on evaporation is

investigated by theory. It is shown that the rate of

evaporation of an oscillating drop varies in time but it is

always greater than or equal to the rate of evaporation

of the equivalent spherical drop. The increase in the

evaporation rate is proportional to the square of the

surface disturbance amplitude and is larger for higher

Table 3

Variations of Gn, Hn, and their ratio with the mode of oscilla-

tions

n Gn Hn Gn=Hn

2 0.600 0.400 1.500

3 0.781 0.500 1.561

4 0.929 0.611 1.521

5 1.065 0.727 1.465

6 1.196 0.846 1.413

7 1.324 0.967 1.369

8 1.450 1.088 1.332
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modes. When compared to a non-oscillating deformed

drop at the same surface disturbance amplitude, oscil-

lations decrease the rate of evaporation. It is also shown

that the change in the evaporation rate is larger than the

change of the surface area resulted from surface defor-

mation.

While the present study provides new insights into

evaporation of deformed drops and oscillations of

evaporating drops, due to the limitations of the evap-

oration model, the ®nal analysis on the modi®cation of

the evaporation rate is restricted to small disturbance

amplitudes. Nevertheless, the analysis indicates that the

modi®cation in the evaporation rate is enhanced quad-

ratically with the increase of the amplitude of oscilla-

tions, and warrants a future study that allows

consideration of large amplitudes. It should be added

that the main assumptions invoked for this study, are

similar to those adopted in the classical derivation of the

d2-law. Given the success of this law in prediction of

evaporation rate for spherical drops in many cases of

practical interest, we can expect that the results of the

current study can also be used, with reasonable ap-

proximations, in practice. A main issue in the practical

application, however, is a judicious choice of mean

property values based on the temperature range of

concern.
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Appendix A

In this appendix, evaluation of integrals I1 and I2 of

Section 3, is described

I1 � 2pI11 � pI12;

I11 �
Z p

0

h2 sin / d/; I12 �
Z p

0

h2
/ sin / d/: �A:1�

Substituting l � cos / in (A.1) yields

I11 � R2
n

Z 1

ÿ1

�1� anPn�2 dl

� 2R2
n � 2�2n� 1�ÿ1R2

na2
n; �A:2�

I12 � R2
na2

n

Z 1

ÿ1

�1ÿ l2� dPn

dl

� �2

dl

� 2n�n� 1��2n� 1�ÿ1R2
na2

n; �A:3�

I1 � 4pR2
n � 2p�2n� 1�ÿ1�n2 � n� 2�R2

na2
n: �A:4�

Similarly

I2 � 2pI21 � pI22;

I21 �
Z p

0

Pnh2 sin / d/;

I22 �
Z p

0

Pnh2
/ sin / d/; �A:5�

I21 � R2
n

Z 1

ÿ1

Pn�1� anPn�2 dl

� 4�2n� 1�ÿ1R2
nan � R2

na2
n

Z 1

ÿ1

P 3
n dl; �A:6�

I22 � R2
na2

n

Z 1

ÿ1

Pn�1ÿ l2� dPn

dl

� �2

dl � n�n� 1�R2
na2

n

Z 1

ÿ1

P 3
n dl; �A:7�

I2 � 8p�2n� 1�ÿ1R2
nan � p�n2 � n� 2�R2

na2
n

Z 1

ÿ1

P 3
n dl:

�A:8�
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